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Uniform Expansions for a Class of Finite Difference 
Schemes for Elliptic Boundary Value Problems 

By Harry Munz 

Abstract. For a class of finite difference schemes for the Dirichlet problem on a bounded 
region Q c R', the existence of uniform expansions of the approximate solution for 
meshlength h -O0 is shown. The results also improve error bounds which Pereyra, Pros- 
kurowski, and Widlund obtained with respect to certain discrete L2-norms. 

1. Introduction. In [7], Pereyra, Proskurowski, and Widlund discuss a class of 
finite difference schemes, due to H.-O. Kreiss, for the Poisson-equation Au = f in 
an arbitrary bounded region Q c R' with Dirichlet boundary conditions. 

On a uniform mesh, they replace the second-order partial derivatives by the 
standard three-point finite difference approximations. In points near the boundary 
F of Q, it may happen that one or more of the points needed in this approximation 
lie outside O. For those points, provisional values are calculated by one-dimen- 
sional polynomial extrapolation of fixed degree k along the corresponding mesh 
line, thereby using the boundary value at the intersection of the mesh line and F. 

For k < 6, Pereyra et al. [7] could show the stability and the convergence of 
these schemes and the existence of asymptotic expansions for h -* 0 of the finite 
difference solution U with respect to certain discrete L2-norms, which allow the use 
of Richardson extrapolation or deferred correction methods. For a sufficiently 
smooth boundary IF, their expansions have the form 

(1) U = Ah(U + h2e(l) + h4e(2)) + O(h k-0.5) 

where Ah is the restriction operator to meshpoints in Q, and e(l), e(2) are certain 
continuous functions on Q, independent of h. 

Pereyra et al. [7] conjecture the existence of similar expansions in the discrete 
maximum norm. 

In this paper, the schemes of Pereyra et al. are applied to general linear 
second-order elliptic equations without mixed derivatives with Dirichlet boundary 
conditions. 

For k < 2 and a sufficiently fine mesh, the finite difference operators obtained 
are of inverse monotone type. Therefore, the classical convergence proof works [2]. 
For k < 4, an idea of Bramble and Hubbard [1] can be used to show the 
convergence of the schemes for the generalized problem and the existence of 
asymptotic expansions of the approximate solution with respect to both the discrete 
maximum norm and the discrete L2-norms of Pereyra et al. [7]; the difference 
operator is modified near the boundary such that it becomes inverse monotone, 
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and the points where a modification is necessary are discussed separately. The 
expansions obtained have the form 

(2) U = Ah(u + h2e(') + h4e(2)) + O(hk+l) 

in both norms. 
Finally, we report on numerical tests in which we exploited the asymptotic 

expansions by a modified deferred correction method. Unfortunately, the theorems 
of Pereyra [6], on the gain in accuracy obtained by using deferred correction 
methods, do not fit the present case. 

2. The Difference Operator. For h > 0, let R' denote a uniform mesh of mesh 
size h on the R'. We assume that there are enough meshpoints on each mesh line in 
Q so that the extrapolation operations described in Section 1 and below are 
possible. Let Qh := R' n U. We denote by Rh the set of regular meshpoints, i.e. of 
those points x E Qh which have all their closest neighbors x ? hei, i = 1, ... , n, in 
Q (ei is the unit vector parallel to the ith coordinate axis), and define F'xh 
Qh \ Rh. The set of all xi" (see Figure 1), i.e. of all intersections of mesh lines 
meeting Q with the boundary F of U, is called "h and Qh := Qh U "h. Finally, we 
assume Rh to be meshwise connected, i.e. for every pair of points in Rh there is a 
path which consists of mesh lines connecting the two points. 

We will consider a class of finite difference approximations to the linear 
second-order elliptic equation, 

n n 

(3) Lu:= - aiU2, +2 b1ux,+c=f inQU, 
i=l i=l 

with Dirichlet boundary conditions 

(4) ulr=g onI. 

Here ai, bi (i = 1, .I. , n), and c are continuous real valued functions on Q which 
satisfy the following conditions: 

(i) 3a-, a- > 0: a- < ai(x) S a- for all x E= Q, i E- {1, . . . , n} 
(ii) 3 ,8 > l: I bi(x)l < 8 for all x E= Q, i E { I,... n} 

(iii) 3j > 0: 0 < c(x) < j for all x e U. 
We assume, that problem (3), (4) has a solution u, which is unique by the maximum 
principle. 

We are now in a position to define the finite difference operator Lhk which is 
used in the approximation of (3) and (4). We will use a notation that differs from 
that of Pereyra et al. [7]. Lh,k is a linear operator on the finite dimensional vector 
space F(uh) of all real valued functions on Qh. Let W E F(Uh). 

For x E Rh, the operator Lh,k is obtained by replacing u2x by 

(5a) (D2X W)(x) := h-2( W(x - hei) - 2 W(x) + W(x + hei)) 

and uX, by 

(5b) (Dx W)(x) := (2h)-'(W(x + hei) - W(x - hei)), 
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which gives 

n 

(Lh,k W)(x) = - E a,(x)(D2x W)(x) 
(6) i=1 n 

+ 2 E bi(x)(Dx W)(x) + c(x) W(x). 
i=l1 

7-7~~~~~~~~~~~~~~~~~~~- 

0 S 1 2 3 _ 

x-hei r x x.hei x+2hei 

__ __e __ 3 2 1S0 

x-2hei x-he, x x7 x+hei 

ei 

a b 

FIGURE 1 

For x E Fx and x - hei - Q, say, an auxiliary one-dimensional coordinate 

system ( is introduced according to Figure la. Let Q(t) := Ek=o cj1(0) be a 
polynomial satisfying Q(s) = W(x[), where Cj := W(x + (j - 1)hei), j > 1, and 

lj(() is that polynomial of degree k which satisfies lj(j') = 8jj, j j' E {O, ... , k}. 
Then the interpolated value of W in x - hei is given by 

k k 

(7a) W(x - he,) := co= k W(X,) - E W(x + (j - l)hei) k' 
a0 j=I a0 

where 
k 

jk kYS'):=s (7b) a k=a k = 
l=0;l#j J- 

As x E 'x implies x E Q, we have 0 < s < 1. Therefore, co is well defined for all 

possible values of s. Using this provisional value for W(x - hei) in (5) gives 

k k 
a0 a0 

+ 1 
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whereas (6) yields 

(Dx W)(x) 2h(( ) W(x)(+ (+) ( 

k k 

(9) + k W(x + 2he) + **+ k W(x + (k - I)he,) 

- 2hak W(xf). 

For x + he,, ( oh, the auxiliary coordinate system is defined according to Figure 
lb. In that case Eq. (8) remains unchanged whereas in (9) signs are reversed. 

It is easily seen that for x + hei = x4 one gets af k = aoj, j = 0, . . ., k, which 
means co = W(xf), as expected. 

Proper denumeration of points of Qh allows us to write each W E F(Uh) as 
W = (WR, Wx, Wd)T where WR, WX, and Wd are functions on Rh, F^, and "h, 
respectively. 

The finite difference approximation problem to (1) is now given by 

(10)~~~~~~~~~~~~~~~~~~~~~ ( 10) Lh,k [ Ahdg 

where Ah Ad are the restriction operators to Qh, r respectively, and Lhk W 
decomposes into 

( 1 1 ) Lh k W =[L2 k422 k L k] WX ] 

O O I _wd 

where I is an identity matrix of appropriate size. 
The first line of Lhk, which is independent of k, gives (Lh,k W)(X) for x E Rh, the 

second for x E FLX, and the third incorporates the boundary conditions. 

3. Two Lemmas. In order to avoid unnecessary notational complexity, we will 
restrict ourselves to the cases n = 2 and k = 4. The generalizations to n > 2 and 
k < 3 are straightforward. However, to show the dependence of the results on k, 
we will continue to write k instead of its specific value 4. 

For the sequel, we assume the following conditions (cond) to be satisfied: 
(i) Let Ak := (hn)nEflN be a monotonically decreasing sequence of positive real 

numbers, satisfying limn-oo hn = 0, such that there is a mesh for each hn, which 
satisfies the condition of Section 2. 

(ii) The unique solution u of (3), (4) and the functions e(l), e(2), defined below, are 
smooth enough, so that all derivatives needed exist and are uniformly bounded. (In 
a tedious definition, exact differentiability conditions for these functions, which 
depend on k, have been given in [5].) 

On Q we define 
2 

2ai 2bh 



UNIFORM EXPANSIONS FOR FINITE DIFFERENCE SCHEMES 159 

(13) DL, u, e) : (2ai( 6! + 4 + 2bi( +5! + 

where e(l) is the solution of 

(14) Le(') = D,(L, u) in Q, 

e(l) 'r_= 0. 

e(2) will then denote the solution of 

Le(2) = D_(L, u, e(l)) in Q, 
( 1 5) e(2) -r = 0 

Finally, let V, E(h, k) E F(Qh) be defined by 

(16) V Ah(u + h2e(l) + h4e(2)), 

(17) E(h, k)(x) f I(Lh,k,V)(X) - (A)(X) I X E O 

where Ah is the restriction operator to Qh. 

Remark. Theorem 1 will show that for k = 2, 3 it is sufficient to define 
V := Ah(U + h2e(1)), whereas for k = 1, V = AhU will do. This reduces the 
smoothness conditions on u (and e(1)) for k < 3. Details have been worked out in 

[5]. 
The following two lemmas are generalizations of lemmas used by Pereyra et al. 

[7, Section 4]. The proofs of these lemmas have been worked out in [5]. It does not 
seem appropriate to present all the arguments here. 

LEMMA 1. Let condition (cond) be satisfied. Then there exists a constant C1 > 0 
such that 

E(h, k)(x) < Clhk+1 

for all h E Ak and x E Rh. 

Proof. The proof is straightforward using Taylor expansion of u, e(1), and e(2) 

about x in (Lh,k V)(x) and the uniform boundedness of the partial derivatives of 
u, e(1), and e(2) occurring in the last terms of the Taylor expansion. 

LEMMA 2. Let condition (cond) be satisfied. There exists a constant C2,k, depending 
on k, so that 

E(h, k)(x) < C2?kh k-I 

for all h E Ak and x E IF. 

Proof. To prove this lemma, we have to handle the case where provisional values 
for V outside Q have to be calculated. We assume the existence of Taylor 
expansions of u, e(1), and e(2) about x1' (Figure 1) of sufficient order, thus continu- 
ing these functions sufficiently smoothly along the corresponding mesh line. The 
interpolation values of u, e(1) and e(2) in x + hei and x - hei, respectively, can now 
be interpreted as interpolation values of these continued functions and therefore 
can be replaced by the values of the continued functions with the appropriate 
interpolation error terms added. These additional error terms are responsible for 
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the factor h k-I in Lemma 2 instead of h k,+1 as in Lemma 1. As the continued 
functions are smooth enough, Taylor expansion about x is possible, so that the 
remainder of the proof is similar to the proof of Lemma 1. 

4. Asymptotic Expansions. For h E Ak, we define the operator Lh,k on F(Kh) by 

_Lhl IL*l 2 o 

(18) Lh,k [ I22 o4 

O O I- 

where I22 is an identity matrix of appropriate size and I is the corresponding 
matrix of (1 1). 

We have the following discrete maximum principle. 

LEMMA 3. Assume condition (cond) to be satisfied. There exists an nk E N such 
that for h E A {hn E AkIn > nk} and Wh E F(-h), (Lh,kJY)(x) ? 0 for all 
x E Rh implies 

(19) Wh(x) < max(0, max (W(y))) for all x EOQh. 
YE Fx U rh 

Furthermore, Lh,k is monotone (Young [9, p. 44]). Specifically, Lh,k is nonsingular and 
its inverse is given by 

w Lh" 1 -(Lhll1)- Lh2 
o 

(20) L-k= OI2 Lhk=[ 0 ij22 0. 

? 0 I2 

Proof. Choose nk E N such that h < /fB for all h E A'. Observing the special 
structure of Lhk and the meshwise connectedness of Rh, the lemma now follows 
immediately from Theorem 1 and Theorem 3 of Ciarlet [3]. 

For h E Ak, W E F(2h), and an operator Lh on F(2h), let lh(x, y) denote that 
element of the matrix representation of Lh which is multiplied with W(y) in the 
computation of (L. W)(x). The operator norm I l generated by the maximum 
norm jj llo on F(Uh) is then given by 

(22) LhI max 
() x Kh y (=-Kh 

LEMMA 4. Let condition (cond) be satisfied. Then there are constants x4, xo, q E R, 
and nk E N such that 

(23) IL' l |x 6 Cm max (exp( [ (xI -x) + (x2 - 4)])) I ~~, k ~ (XI, X2)EF 
X)+(2-X0 

for all h E A' = hn E Akin > nk}. 

Proof. The technique used in this proof goes back to L. Bers; cf. [1]. Let 
r7:=2.* 82/a + y + 1 and choose Xo, Xo such that X1x l >0, X2X2 -4> O for 

all x = (xI, x2) C S2, which is always possible as S2 is bounded. v: R2 R can now 
be defined by 

(24) R2 3 x = (xI, x2) H> v(xI, x2) := exp(ii[(x - X4) + (x2 - X)1). 
For h E Ak, let Wh := ?vC E F(Qk). Obviously, Wh(x) > 0 for all x E Ch. For 
x C R2, Taylor expansion gives, for i = 1, 2, 
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2v(x) - v(x - he,) - v(x + hei) = -h2v2 (x) - (v4x(x) + v4x(ij) 
(25) 4 

= -h2V2x(x) - 72 V4x (X + 6ihei), 

where x, x= E (x-hei, x + he,), which is the line segment connecting x - hei and 
x + hei and -1 < Si < 1. Similarly, we have, for i = 1, 2, 

(26) v(x + he,) - v(x - hei) = 2hvx,(x) + yV3x,(X + 82+ihei), 

where -l < 82+, < 1. 
Using (24)-(26) in the definition of Lh,k Wh, gives, for x E Rh, 

(Lh,k Wh)(x) = 
exp(4[(x, 

- ) + (X2 - 2)]) 

[(-afq2 - a272 + 2b1n + 2b2q + c) 

+h2(-a 1 4 exp(-qSh) - -2 4 exp(062h) 

+ b, 3 exp(m53h) + -2y3 exp(q64h)I 
(27) +3 

'q 31 
< exp(q[(xI - x4) + (x2 - x4)]) 

*[ (-2,2 + 4#,B7 + y) 

+h -2- 6 exp(-,qh) + 3 n3 exp(,qh)), 

where we used ai := ai(x), bi := bi(x) (i = 1, 2), c = c(x), and 71 > 0. 
As a consequence of our definition of 7, we have 

-M 2 - 4 - -20} + 4/)2+ 57+ 

--84 - 8/2(57 +1) - 2(7(y + )2 + 8/ + 4/8(y- +1) + y 
(28) a a 

< _4/2(y + 1) - 2a(y 
+ 

1)2 + y 

< -4y5 -4 + y < -4, 

which makes the first term in (27) less than -4. 
We can choose nk E N such that for all h C A' the statements of Lemma 3 and 

the following inequalities are true: 

(29) (i) h < (ii) h2( _ q 4 1+ 8 3 e) < 3. 

This choice of nk makes the second summand of (27) less than 3. 
Hence, we have 

(30) (Lh,k Wh)(X) < -1 

for all h C A' and x E Rh. 
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For h E A' the operator L7J exists by Lemma 3, and we can define 

Qh,k hLkE e F(Qh), E(x) := 1 for all x E Oh, which is equivalent to Qh,k(X) 

= 2Y EQEh lk(x, y) = 2yGea | I17(X, y)I for all x E Qh, by the monotonicity of Lhk. 
Here, 44k(x,y) is the appropriate element of the matrix representation of Lh (Cf. 
(22)). 

This implies Qh,k(X) = 1 for all x E r, U F,. For x E Rh, we have 

(Lh,k(iWh + Qh,k))(x) < -1 + 1 = 0, 

by (30) and the definition of Qh,k* Use of the discrete maximum principle of 
Lemma 3 for Lh,k gives for x E Rh, 

Qh,k(x) + 1 < Qh,k(X) + min Wh(x) < (Wh + Qh,k)(X) 
X E Qh 

< max(0, max ((Wh + Qh,k)('))) 
(31) CE rxh u Ih 

< max (Wh(x)) + 1 

< (Xlmx)E (V1 - 4) + (x2- 0)])) + 1 

As the last expression of (31) is always greater than 2, 

| I := max ( E I h7W(x,y)I) 

(32) XE h Y EOh 

< max (exp( [ (x, - X ) + (X2- X20)]) ?(XI, X2 (E 
-4)+ x 

-I)]) 
which proves the lemma. 

LEMMA 5. There is a constant dk, 0 < dk < 1, such that 

(33) dk 2 + (I - e) 
( ) 

| (I + [) 
k Ia(s)I 

UkKTkI~~)k(S J1=2 lak(S) I ] 

for all s E [0, 1) and for all 0 < e < 1/10. 

Proof. By definition of af, we have 

(34) a k(s) > 0 for all s E [0, 1), 

(35) sgn a(s= -+ for allj E I ,... k}, s E (0, l), 

(36) afk(o) = 0 forallj E {,. . ., k}. 

As both sides of (33) depend monotonously on c, we can assume e = 1/10. When 
we set dk := 19/20 and use (34)-(36), then (33) is equivalent to 

24(160a4(s) + 171a'(s) + 220a'(s) - 220a4(s) + 220a 4(s)) > 0. 

As 

24(160a 4(s) + 171la4(s) + 220a4(s) - 220a 4(S) + 220a4(s)) 

(37) = 4(474s4 - 3371s3 + 6909s2 - 3946s + 960) 

> 4(-3371s3 + 6909s2 - 3946s + 960) =: p(s), 

it suffices to show p(s) > 0 for all s E [0, 1]. 
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Applying the well-known division algorithm for polynomials to 

fo(s) = p(s), f1(s) := p'(s) = -101 13S2 + 138185s - 3946, 
one gets 

5218922 620842 
f2(s) = - 10113 10113 f3(s) = const. 

Hence, the number Z(x) of sign changes of the sequence (f0(x), fl(x), f2(x), and 
f3(X)) is 

ZM = Z(O) 
2 if sgn~ 1, Z(l) = Z(?) = { l for all other cases. 

By a well-known theorem of Sturm, this implies that there are no zeros of 

p(s) = fo(s) in [0, 1). Hence,p(l) > 0 gives p(s) > 0 for all s E [0, 1]. 
Remark. The cases k < 3 can be proved by elementary calculation. Any choice 

of dk which satisfies 1 > dk > 0.59 will do. 
For k > 5, an s E [0, 1) can be found such that 

olk(5 ) k lactk(5-) 

2 + al"& < a sai()I + 1. 
otk(5-) 1-2 1k(5-)1 aos 1-2 lao s) 

Therefore, Lemma 5 is not valid in that case. This is the reason why we can show 
the validity of our expansions only for the cases k < 4. 

LEMMA 6. Let condition (cond) be satisfied. Then there are constants nk E N and 

6k, ? < 6k < 1, such that for all h E {hn E Akin > n,j and all X E Ji' 

(38) 6kllh,k(x, x)I > 2 Ilh,k(X, Y)I 
Y E Qh; Y #X 

Furthermore 

(39) Ilh,k(x, x)| > 40h for all x E Fh. 

Proof. Choose nk such that h,/l/ < 10-1 for all h E A' and define 

) dk : (ot ~~~+ o Vk) (? + X), (40) 6k a ad 

where dk is the constant of Lemma 5. By 

(41) 1 - (l dk)/ (a +a) > 0 

and 

(42) k dk -(l dk)/ (a+ a) > O, 

we have 0 < dk < Sk < 1. 
For x E ]Fx, we distinguish the following two cases. 
(i) One of the four closest neighbors x + hei (i = 1, 2) of x is not in Oh, i.e. 

interpolation is necessary for exactly one coordinate direction. 
(ii) Two of the closest neighbors of x are not in Oh. 

(i) Let x + he, (4 Oh. By (34)-(36) and our choice of nk, we have 
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h'Ilhk(x, x)j = 2a(x) + 2a2(x) + la,(x) - hbl(x)l | + c(x) 

> al(x) 2 + 1 - h bl(x) ,(s) 1 + 2a2(x) 

(43) ~~~~~~ai(x) ao() 

> al(x) 2 + 1 - h _ (s) J + 2a2(X) 

> a,(x) 2 + I( 1 + 2a2(x) > 4a, [ W ask(s)] 
2X >4i 

which proves the second part of the lemma. Further, 

h2 . I llh,k(X, Y)| 
y Eah; y#X 

= a(x) F ? | 1-h ba(x) a/(s) bl(x) 1 + 

1(x) E I - +[ k4 + 2 Ih( )2 

(41)-(44) and Lemma 5 now give 

h28k lh,k(X X))I > 6kFal(x)(2 + aI (s) + 2a2(X) 10 ak(S)j 

(/ ~~9 a k(S) 
> 28ka2(X) + 2(6k - dk)al(x) + dktal(x)12 +10 - ) ) 

- 2a2(x) - 2(1 - ,k)a2(X) + 2(6k - dk)al(x) 

+ dk al(x)(2 + I 
:()) 

> 2a2(x) - 2(1 - Sk)a= +2(6k - dk) + dk(al(x)(2 + 9 
a4() )) 

- 2a2(x) + dkal(x)(2 + 
9 

a(s) ) 

> 2a2(x) + 4F al(x) E |Ik(| + 

> h 2 
lh^,k(X, )l, 

Y EQh; y#x 

which proves the lemma. The other cases of (i) are proved similarly. 
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(ii) Let x + he,, x + he2 ( Qh. By (34)-(36) and our choice of nk, we have 

hl lh,k(x, X)| = 2a,(x) + |al(x) - hbl(x)I ak(s) 

+ 2a2(x) + I a2(x) - hb2(x) I t) + c(x) 

k ak(t) 
46 > ax2 -hbl(x) 

a | (s) + a 2 + bI () () ] 
1 a(x) aa(S) 

a2( 21 - hk 
a( 

] )(t) 

>ai(x)[2+ 1-h' ak]+2x 2 a k(t)I 

> al(x) 2 + I -(s 1 
| + a2(x) 2 + I( I > la, 

which proves the second part of the lemma. Further, by our choice of nk, 

h~~~ ~~~~ a k(S a ahX kY) i 

YE~2h;Y#X 

ak ka 9 a(s) 

= E jal(x) -hb1(x)I Ik( +I|ai(x) + hbi(x)I 

(47)x2+ 1a2(x)-hb2(x)/ (t) I+ | a2(x) + hb2(x)I 

1=2 aa0(t)10a (t 

1(x)[2i : *|I + 1O]1 + a2(x)[Ll0 |ao(t) 0] 

which together with (46),6k > dk and Lemma 5 again proves the lemma. 
The other cases of (ii) are treated in a similar way. 
Remark(. This lemma holds for arbitrary space dimension n. The arguments of 

the proof have to be modified to account for the space dimension. 

LEMMA 7. Let condition (cond) be satisfied. Then there is an nk E N such that, for 

all h E Aj = {hn EAkl n > nk}, 

(a) I(Lh ) Lh 2Ko = 1 (cf. Eq. (22)). 
(b) Lh k is nonsingular. 

Proof. Let nk be the maximum of the corresponding constants of Lemma 3 and 

Lemma 6. 
(i) For x eRh, the ch oice of nk ensures 

(48) E lh,k(x,Y ) = k lh,k(x,y) = 0. 
Y eah Y eah 

(ii) Let W e F(Q4), W(x) = 1 for all x n d Lemma 3 ensures the existence of 

(LRema. Hence, using (48), we have 
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WjRh - (Lh1)lLhl1(WIR) 

(49) -(L1 1)1 (L W(w|R) + Lhl2(-Wl_ (Lhll) Lh ( 

= -(Lh1 1))Lh,2(WIrx). 

By the monotonicity of 4,k (Lemma 3), this implies (a). 
(iii) Let W E F(Qh) satisfy 4,k W = 0, and assume the existence of x E _Qh such 

that I W(x)I > 0. The definition of Lh,k immediately gives WIrh = 0. 
Hence, Lhk W = 0 is equivalent to 

(50a) LhllW|I& + Lh12WIr= 
0 

and 

(5Ob) LWI h k + Lh k Wlr= 0. 

(50b) is equivalent to 

- 
I 1h,k(X y) W(y) = lh,k(X, X) W(x) 

Y EGh; Y :X 

for x C fr. 
Lemma 6 now gives 

j ls,k(X, X) W(x) l h,k(X I Y) |I| W(y )| 

(51) < max I W(y)I X Ilh,k(x,y)l 
Y C h; y #X yEQh; y #*X 

< max |W(y)| * kIlh,k(x, x)j. 
y C h; Y#X 

If there were x- E rTx with W(x) = maxye I W(y)I > 0, we would have 

(4,k(x, X) # 0), 0 < I W(X)I < 6k max IW(y)I < max I W(y)j, 
Y E2h; Y yX yE Oh; y:#x 

which contradicts the maximality of W(x). Hence, the maximum of j W(x)l is 
assumed in a point x- E Rh. Using (ii) and (50a), this gives 

I WM I = 
11 WIph <I (Lh 1) "LI I| * WIi0j = II 

wlrhil 

This implies that there must be an x C rx where I W(x)l assumes its maximum, too. 
We just saw that this is possible. Therefore there cannot exist an x E Kih with 

I W(x)I > 0, which proves part (b) of the lemma. We are now in a position to state 

and prove the main theorem of this paper. 

THEOREM 1. Let Q C R 2 be a bounded region and k C {I, . . ., 4). Assume, 
further, condition (cond) to be satisfied. Then there is an nk C N such that, for all 

h e A' { hn & Akin > nk}, there exists a unique solution Uh,k of (10). Further- 

more, nk can be chosen such that there is a constant Ck > 0 giving 

(52) II V- Uhk I Im < Ckh 

for all h E A' 
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Proof (cf. [1]). Let nk be the maximum of the corresponding constants of the 
previous lemmas. Now Lemma 7 immediately gives the existence and the unique- 
ness of the solution Uk,h of (10). 

For h E A', define 

(53) Rh,k V= - Uh,k 

Vlrh = Ldg Uh,kIr, gives RhkIFh = 0. By Lemma 3, L' exists for all h E A' h h,k I r, 4~~~~~~~~~~hk k 

Hence, for all h E A', we have, using (20), 

(Lh,kRRh,k)I h 

Rhk=(h,k ) h,k Ir-h 

(Lh,kRh,k) I h -(Lhl) LhI2Rh,kIr] 

which implies 

11lRh,k 1lloo <ItL, l oo maRx ( Lh,kRh,k ) (X ) 4A x E- Rh 

(55) II(Lh1l)'LLh2 maxlRh,k(x)I, max Rh k(x) I (55, +mx1I \ ! iox E=Fx x E=Fx 

< Cm maX I(Lh,kRh,k)(X)l + max IRh,k(x)I. 
xeRh X E x hFx 

By Lemma 1, there exists a constant C1 such that, for all h E A' 

(56) max I(Lh,kRh,k)(X)l ? C-lh 

For h E A' and x E Jx, observation of Rh kIFh = 0 gives 

(Lh,kRh,k)(X) = a lh,k(X,Y)Rh,k(Y), 
Y Eh 

which implies 

(57) IRh,,k(X)I ?< lh4,k (XIY) .maLx IRh,k (Y) + ILh,,k Rh,k)(X)I 
yE Qh;y#'x lh,k(X, X) YE h;Yx Il h,k(X X))I 

Lemma 2 and the second part of Lemma 6 ensure 

(58) I(Lh,kRh,k)(X)I 
I 4_h 

Ilh,k(X, X)j 4aii 
whereas the first part of Lemma 6 gives 

(59) I I lh,k(XI Y) I 
< Sk 

(= *;yX 1h,k(X, X) 

Now we use (58) and (59) in (57) and take the maximum of jRh,k(x)I for x E Fxh. 
Then, 

(60) max IRh,k(X)I < 1 C h + kIIRh,klloo- 
h 4a 



168 HARRY MUNZ 

Using (56) and (60) in (55) yields 

1 + C2,k k (61) IRh,kllo < CmClh + 4 ha- 1 + 6kIRh,k11.o 

Hence, 

(62) I1Rh,kIllo < 6k(Cmcl + h 

Setting 

Ck 1 G (CmC + 1 _) 

proves the theorem. 
Remarks. (a) For k = 4, the theorem states 

(63) Uh,4 = Ah(U + h2e(l) + h4e(2)) + Rh4, 

where I Rh,411.o = O(h5), as indicated in Section 1. 
As the order of convergence of vector functions in the discrete L2-norms of 

Pereyra et al. [7] is at least of the same order of magnitude as in the discrete 
maximum norm, Theorem 1 is valid with respect to the discrete L2-norms, too. 

(b) If the order of interpolation k depends on x E FP, one can only guarantee an 
expansion of Uh,k which corresponds to the smallest value of k used. 

5. Numerical Results. There are two major classes of methods which use the 
asymptotic expansion of Section 4 to improve the approximations obtained: 
Richardson extrapolation and deferred correction methods. 

In our case, the use of Richardson extrapolation is obviously prohibitive for 
several reasons (cf. [7]). 

The deferred correction methods use, roughly speaking, approximate solutions 
E(1) and E(2) of (14) and (15) respectively instead of e(1) and e(2) in the expansion 
(2) of U. As the functions u and e(1) used in the right-hand sides of (14) and (15) 
are unknown during the calculation, D1 and D2 are approximated by finite 
difference expressions D1(L, U) and D2(L, U1, E 1(),respectively, where U1 is the 
approximate solution after the first correction step given by U1 := U - 2E(1). 

The method just described is not the best possible. To improve the accuracy one 
has to recall the fact that E(1) and E(2) also have expansions of the form (2). 
Elementary considerations, which have been carried out in [5], show that this fact 
can be taken into account by using D2 := D2(L, U1, E(1)) - 2D1(L, E(1)) instead 
of D2(L, U1, EM1)) in the approximation of (15). Numerical experiments have been 
carried out on a Telefunken TR 440 computer at the University of Tubingen. As a 
model problem we used the Poisson equation -/u = f in 2, ulr = g on r, where 

{(x1, x2) E R2 1x 2 + x2 < 0.999). For h = 0.1, we have 305 meshpoints, at 
least nine of them on each mesh line meeting Q. In D1 we alternatively used 
standard centered five- and seven-point formulas as given by Collatz [4] for the 
approximation of the fourth-order partial derivatives. As b1 = b2 = 0, third-order 
derivatives do not occur. In D2 we used centered seven- and centered five-point 
formulas (cf. [4]) for the approximation of the sixth- and fourth-order partial 
derivatives, respectively. Again, third- and fifth-order derivatives do not occur. 
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Near the boundary of Q, points used in D1 and D2 may lie outside Q2. For these 
points provisional values were calculated by one-dimensional extrapolation of fixed 
degree k along the corresponding mesh line. 

The systems of linear equations were solved by the SOR-method (cf. [8]), as this 
method can be used for the difference approximation of the general problem (3), 
(4), too. The overrelaxation parameter w has been determined experimentally by 
estimating the rate of convergence for different values of W. If one is only 
concerned with the Poisson equation, direct methods, as used by Pereyra et al. [7], 
seem to be advantageous. 

After testing our program for problems with polynomial solutions of low order, 
for which the approximate solutions should be very accurate, we ran the program 
for problems which have the following solutions. 

(i) u(x1, x2) = sin(xl + x2). This is an example of a very smooth solution. It was 
chosen to test the general behavior of the algorithms. The accuracy obtained in the 
three consecutive steps was approximately 10-5, 10-7, 10-8. 

10 + x 1. This is an example of a solution, which has a rather U(i)uX1, X2) x +i x2 

steep gradient just outside ?, which may cause increased errors in the polynomial 
extrapolation. The accuracy obtained was of the order of 10-2 to 10-3 and hence far 
below that reached for (i). The correction steps brought about only a very 
moderate increase in accuracy 

(iii) u(xI x2) = (r2 _ x2- x 2)5/2, r = 0.999. This problem was chosen since it 
does not allow for a Taylor expansion of sufficiently high order, as it is needed in 
the proof of Lemma 2. (This case is discussed theoretically in [5]. The result is, that 
there still exists an expansion of the form (2) with the error term O(h k +1) replaced 
by 0(h'), wherej depends on the smoothness of the exact solution u on ?2 (and not 
? as in the proof of Lemma 2).) 

The accuracy was of the order of 10-3 to 10A where the first correction step 
brought about the major improvement, which can be expected if j < 4. 

For each problem, the program was run several times varying k, k, and the kind 
of approximation used in D1. Generally, the improvement in the first and second 
correction step depended heavily on the accuracy of the approximations used in D, 
and D2, especially on the choice of k. When these approximations were poor, the 
last correction step sometimes even spoiled the solution obtained in the previous 
steps. 

This observation is supported by test runs for (i) and (ii) which used the exact 
right-hand sides of (14) and (15) and which showed much better results than those 
using D1 and D2. This indicates that the algorithms may be considerably improved 
by the use of better approximations in D1 and D2. 

Finally, comparison of the runs for k = 4 and k = 6 showed better results for 
k = 6 than for k = 4. This supports the conjecture of Pereyra et al. [7] that, for 
k = 6, there may be an expansion of the form U = Ah(u + h2e(') + h4e(2) + h6e(3)) 
+ 0(h),j> 6. 
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